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I. Introduction

T HEevaluation of flutter characteristics ofwings and rotor blades
is critical to avoid structural failures [1]. Wind-tunnel

experiments in this area are rare due to the high expenses involved,
and flight tests are almost impossible due to high risk [2].
Computational flutter simulations based on linear theory (LT)
methods are well established, but they are not adequate to resolve the
flow complexities involved in real flights. High-fidelity computa-
tional fluid dynamics (CFD) methods based on the Navier–Stokes
equations are needed.
Aeroelastic computations using the potential flow theory-based

CFD were started in conjunction with time-integration (TI) and
frequency domain (FD) approaches in the late 1970s [3]. Currently,
CFD for aeroelasticity has advanced to use Reynolds averaged
Navier–Stokes (RANS) equations [4]. The TI approach [4] needed in
the final stages of design is computationally more expensive than the
FD [5] approach for computing flutter boundaries, since aeroelastic
responses need to be computed for changes in every design
parameter. Under certain assumptions, a good prediction of a flutter
boundary can be made using the FD approach [5]. The primary
assumption in the FD approach is that the aerodynamic loads can
be linearly superimposed among modes, since flutter starts as a
small perturbation phenomenon. Hence, this approach is computa-
tionally less expensive than the TI approach, since only one-time
computation of aerodynamic data is required for a selected set of
modes and frequencies. Data for arbitrary frequencies are generated
by interpolating the precomputed aerodynamic data based on
selected frequencies [5].
Similar to the FD, methods based on reduced-order modeling are

introduced to reduce the computational cost [6]. However, as stated in
[7], studies show that reduced-order models are neither robust with
respect to parameter changes nor cheap to generate data when using
the Navier–Stokes equations. The FD approach well established in
industry [8] for LT-based methods is highly suitable for large-scale
computations using CFD.
Compared to using LT, the computational time is significantly

larger for using the Navier–Stokes-equations-based CFD. Develop-
ments in supercomputers have alleviated the computational time
issues. This Note describes a procedure using parallel computers for

efficiently computing the flutter boundaries by the RANS-based FD
approach. The unsteady aerodynamic data are obtained by time-
accurately solving the RANS equations for oscillatory motions. A
modal approach is then used to compute the flutter boundary.
Contrary to the common practice of generating data by submitting
jobs for cases separately (concurrent computing) [9], in the present
Note, computations are made efficiently in a single job environment
using a parallel protocol [10]. With this protocol, all cases start and
end at the same time, eliminating the effort to monitor multiple jobs.

II. Solution Procedure on Parallel Computers

Flutter speeds are computed using an eigenvalue approach that
tracks down system damping to identify flutter. Aerodynamic data
required for the analysis are computed by time-accurately integrating
the aerodynamic equations for selected modal motions at various
oscillating frequencies.
The computation of flutter boundaries using the FD approach

needs unsteady airloads fromCFDat different structuralmode shapes
and modal frequencies. Unsteady airload computations using the
Navier–Stokes equations for multiple cases need large amounts of
computer time. The computational resources issue can be alleviated
by using parallel computers for the present FD approach.
Computations are made on NASA’s Pleiades supercomputer with

the Linux operating-system-based parallel batch system (PBS) utility
[10]. The “dplace” utility [11] is used to bind each computer core to a
specific case and prevent case hopping to different cores. This will
ensure that all cases will be completed at the same time. This new
protocol eliminates system overhead associated with starting and
ending of multiple jobs required by the current approach of
submitting one job for each case. Therefore, the wall-clock time for
multiple cases will be almost equal to that for a single case [10].
Mode shapes are generated using the beam functions. Unsteady

airloads are computed for various modes and frequencies. These
airloads are used as input to the eigenvalue flutter solution module,
FLUMOD. Since many steps are involved in computing the flutter
speed, the procedure is streamlined within a UNIX script of the
process, GENMOD shown in Fig. 1.
The following describes the steps of GENMOD:
1) Select the base CFD grid.
2) Create the inputs with subscripts i, j, and k, which are indices

representing rotation speed, mode, and frequency. For example input
of 5 represents the input to CFD for the fifth rotation speed, andmode
24 represents modal input to CFD for the second mode at the fourth
frequency.
3) Spawn the inputs to respective directories.
4) Run all cases simultaneously using PBS protocol on the

supercluster, which automatically fetches corresponding input data.
5) Postprocess responses to generate aerodynamic influence

coefficient (AIC) matrix [12].
6) Input AIC to FLUMOD to compute flutter boundaries.

III. Demonstration of Flutter Boundary Computations

A case of an isolated rotating blade as described in [12] is selected
for demonstration. Computations are made using a CFD grid of size
1.8million points. Flutter speeds are computed for 10 rotating speeds
Ω (in radians per seconds), from 55 to 100, in increments of five for
two types of modes at five oscillating frequencies. The oscillatory
frequencies are 1.6, 1.8, 2.0, 2.2, and 2.4 times the rotating
frequencies. This leads to computing unsteady airloads for 100 cases.
Time integration for four revolutionswith 3600 steps per revolution is
needed to obtain a periodic solution. Each case requires about 23 h of
wall-clock time on a single core of the Pleiades supercomputer [10].
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Using PBS script with the dplace utility, all cases are run in parallel
within about 24 h of wall-clock time on 100 cores.
Figure 2 shows plots of flutter speed vs rotating speed. Flutter

speeds are also shown for the rotating blade without accounting for
change in the stiffness due to centrifugal force. The differences are
more pronounced for higher rotating speeds, as expected. Flutter
boundaries are also compared with an equivalent fixed nonrotating
blade using the flow characteristics at the 75% radial station. The
flutter boundary for the nonrotating blade is lower than that for the
rotating blade. It is attributed to lower stiffness due to the absence of
centrifugal stiffness of the nonrotating blade.
The parallel computing procedure GENMOD is applicable to

larger problems with small overheads. For example, the procedure is
extended to a casewith 10 shaft angles (ranging from 5 to 10 deg) that
needs 1000 responses (10 shaft angles, 10 rotating speeds, 2 modes,
and 5 frequencies). This 1000-case simulation required about 25 h of
wall-clock time compared to the 24 h required for 100 responses. A
factor-of-10 increase in the problem size needed only a 4% increase
in the wall-clock time. The present procedure can be extended
to complex geometries such as full-rotorcraft following the time-
integration procedure presented in [13].

IV. Conclusions

A procedure to use cluster computers to efficiently generate the
Reynolds-averaged Navier–Stokes-equations-based frequency do-
main data for flutter analysis is presented. Contrary to the current
practice of running one job for each case, the present procedure
provides a single job environment for multiple cases. It reduces the
system overhead wall-clock time and eliminates the task of
monitoring multiple jobs. Results demonstrated for a typical rotating
blade establish the practical use of the procedure developed. A factor-
of-10 increase in the number of cases needs only a 4% increase in
wall-clock time.
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Fig. 1 Flowchart of parallel computing process GENMOD.

Fig. 2 Flutter boundary speed vs rotating speeds.
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